
Agent Log

Why and what?
Introduction to the Agent Log application

Scheduled agents in Lotus Notes are vital – but often fail:

Error types:

1. Agent runs, but fails (e.g. object variable not set, division by zero)

2. Agent manager tries to execute the agent, but fails (e.g. access problem, agent needs recompilation)

3. Agent did run at all (e.g. deactivated or activated on an invalid server)

To secure that the agents always runs, we need to implement logging, error trapping and monitoring. If, for

any reason, an agent fails we want to notify the responsible database owner, developer or system

administrator.

Type 1 errors can easily be handle in the code with standard IF..THEN..ELSE statements or ON ERROR GOTO

statements. Type 2 errors can only be found by scanning then log.nsf on every server and type 3 errors can only

be trapped by comparing the agents schedule information with the agent last run date.

The Agent Log gives a simple way to handle all 3 error types:

 Contains a standard script library to include in agents, giving a simple and consistent interface to log

errors

 Gives a common replicated log database to collect agent logs from all servers

 Can scan the log.nsf on all servers to find type 2 errors

 Includes functionality to find type 3 errors

 From a setup view, it is easy to setup the notification system – allowing reports to be sent to the

database owner, agent signer, admin group or a helpdesk database. Error reports can be escalated to

the Notes event handler (can be tracked by GSX or Tivoli)

How?
Quick Developer introduction and a database overview

Developer intro

The agent log database should be replicated to all servers.

Follow these steps to implement logging in an agent:

1. Copy the “cls.log.6”, “cls.fw” and “cls.system” script libraries to your database (the libraries can be

copied from the Agent Log database)

2. Write these lines in your Lotus script agent:

That’s all. Now the agent will create a log document each time is run. If the agents fails (for any reason) a

notification mail will be sent. Use the ‘l.logAction(...)’ statements to write detailed information about agent

execution to the log document.

Note: there is a sample agent (called ‘Sample agent’) in the Agent Log database

Log database overview

The Agent Log database has 3 main sections:

 Logs

 Agents

 Administration

Use “cls.log.6”
Use “cls.fw”
Dim config as new DbConfig()
Dim l As New AgentLog(config.getDatabase(“LOG”)) 'create the log object
‘<your code here>
Call l.logAction(LOG_NORMAL, "Hello World", Nothing) ‘how to write a message to the log (optional)
Call l.close() 'close the log

Log section

In this section you can see all the log documents created by the enabled agents.

Special views

 Errors: show only logs that has reported an error

 Lastest by database: shows only the latest log document (one document per agent)

Agent section

In this section you can view all the enabled agents (document will be created first time the agents runs). On the

agent document you can

 See the scheduling information for the agent

 See the agent last run time

 Set the logging parameters for the agent (severity levels)

 Disabled the notifications for this agent

Administration section

Only visible if you have the [Admin] role. Click ‘Database...’ to open the setup profile document – from here

you can enable/disable the notification system and specify to whom the reports should be mailed to.

Developer reference
More developer documentation and samples

The LogAction method

The LogAction method takes 3 parameters:

 Severity. Severity can be: LOG_FATAL, LOG_FAILURE, LOG_WARNING_HIGH, LOG_WARNING_LOW,

LOG_NORMAL, LOG_VERBOSE or LOG_DEBUG. Severities are used in the Agent Log application to

control log levels and notifications.

 Message string. This message will be added to the log document.

 Link. Include a NotesDatabase, NotesView or NotesDocument object to insert a link in the log

document.

About the ParseParams function

You can use the ParseParam function to make string concatenation more readable.

This code sample code:

ParseParams(“Document ‘%1’ is created %2 by %3 on %4”, doc.subject, now, session.commonUsername, db.server)

Gives exactly the same result as:

“Document’” & doc.subject(0) & “’ is created “ & now & “ by “ & session.commonUsername & “ on “ & db.server

With the ParseParams function it is easier to use constant’s or to make language translations.

About the global SystemLog

The AgentLog should be enabled in the top level script – but will, potentially, be used in all functions and

methods and in all included libraries.

We recommend to use the global SystemLog object when you want to log from sub functions/libraries (better

than using global variables or passing the object as a parameter).

Sample code:

Traceable Error messages

Use a construction like this in all subs, methods and functions:

If an unexpected error occurs you will get a full traceable report on the log document:

As you can see on the log document above, a ‘Division by zero’ error occurred in line 19 in the ‘Foo’ function in

the ‘CustomClass’. This function was called by the Run method (line 7) which was called from the sub Initialize

in the ‘Sample Agent’

The sample agent can be found in the Agent Log database if you want to view all the code.

